A Strongly Quasiconvex PAC-Bayesian Bound

نویسندگان

  • Niklas Thiemann
  • Christian Igel
  • Olivier Wintenberger
  • Yevgeny Seldin
چکیده

We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Kullback-Leibler divergence to a prior. We derive an alternating procedure for minimizing the bound. We show that the bound can be rewritten as a one-dimensional function of the trade-off parameter and provide sufficient conditions under which the function has a single global minimum. When the conditions are satisfied the alternating minimization is guaranteed to converge to the global minimum of the bound. We provide experimental results demonstrating that rigorous minimization of the bound is competitive with cross-validation in tuning the trade-off between complexity and empirical performance. In all our experiments the trade-off turned to be quasiconvex even when the sufficient conditions were violated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PAC-Bayesian Tutorial with A Dropout Bound

This tutorial gives a concise overview of existing PAC-Bayesian theory focusing on three generalization bounds. The first is an Occam bound which handles rules with finite precision parameters and which states that generalization loss is near training loss when the number of bits needed to write the rule is small compared to the sample size. The second is a PAC-Bayesian bound providing a genera...

متن کامل

A Note on the PAC Bayesian Theorem

We prove general exponential moment inequalities for averages of [0,1]valued iid random variables and use them to tighten the PAC Bayesian Theorem. The logarithmic dependence on the sample count in the enumerator of the PAC Bayesian bound is halved.

متن کامل

PAC-Bayesian Policy Evaluation for Reinforcement Learning

Bayesian priors offer a compact yet general means of incorporating domain knowledge into many learning tasks. The correctness of the Bayesian analysis and inference, however, largely depends on accuracy and correctness of these priors. PAC-Bayesian methods overcome this problem by providing bounds that hold regardless of the correctness of the prior distribution. This paper introduces the first...

متن کامل

PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis

We applied PAC-Bayesian framework to derive generalization bounds for co-clustering. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds suggested that co-clustering should optimize a trade-off between its empirical performance and the mutual information that the cluster variables preserve on row and column indices. Proper regulariza...

متن کامل

PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017